120 research outputs found

    Investigating the Feasibility of Open Development of Operations Support Solutions

    No full text
    The telecommunications Operations Support Systems supply chain must address many stakeholders: R&D, Product and Requirements Management, Purchasing, Systems Integration, Systems Administration and Users. While the management of next generation networks and services poses significant technical challenges, the present supply chain, market configuration, and business practices of the OSS community are an obstacle to rapid innovation. Forums for open development could potentially provide a medium to shorten this supply chain for the deployment of workable systems. This paper discusses the potential benefits and barriers to the open development of OSS for the telecommunications industry. It proposes the use of action research to execute a feasibility study into the open development of OSS software solutions within an industry wide Open OSS project

    A parallel Viterbi decoder for block cyclic and convolution codes

    No full text
    We present a parallel version of Viterbi's decoding procedure, for which we are able to demonstrate that the resultant task graph has restricted complexity in that the number of communications to or from any processor cannot exceed 4 for BCH codes. The resulting algorithm works in lock step making it suitable for implementation on a systolic processor array, which we have implemented on a field programmable gate array and demonstrate the perfect scaling of the algorithm for two exemplar BCH codes. The parallelisation strategy is applicable to all cyclic codes and convolution codes. We also present a novel method for generating the state transition diagrams for these codes

    An empirical test of models for the evolution of sexual size dimorphism as a correlated response to selection on body size

    Get PDF
    Applies artificial selection for increasing and decreasing body size in Drosophila melanogaster

    Genetic constraints on the evolution of sexual size dimorphism

    Get PDF
    In this thesis, I use an artificial selection experiment and multivariate simulation modelling to study some basic questions concerning the evolution of sexual size dimorphism (SSD). Fecundity selection is often suggested as the main causal factor underlying the prevalence of female-biased SSD, but this assumption has not been empirically tested. I selected female Drosophila melanogaster for increased or decreased fecundity for 20 generations, and measured the effect on SSD in three morphological traits. SSD generally increased with selection for increased fecundity, but showed no consistent trend with selection for decreased fecundity. These results support the general hypothesis that SSD can evolve rapidly in response to selection for increased fecundity. SSD can evolve for a number of reasons. The two main causes are thought to be sexual selection on males, and natural selection favouring different trait optima in the two sexes. Lande (1980a,b) has produced analytical models that can be used for predicting the change in SSD through either of these mechanisms. Although these models are often cited, they have never been adequately tested, either empirically or through simulation modelling. They rely on a large number of simplifying assumptions, and their robustness to violations of these assumptions is largely unknown. In this thesis, I present results from stochastic simulation models designed to test the effects of mutational variance assumptions, finite populations, and finite numbers of loci on the robustness of the analytical models predictions. The quality of the predictions depends on the nature of allelic distributions in the original population. If allelic effects are approximately normally distributed, the predictions can be very accurate. If, as is likely, allelic effects have a leptokurtic distribution, Lande's equations underestimate the rate of response and correlated response, and overestimate the time required for the trait means to reach their equilibrium values. Predictions for the magnitude of SSD at equilibrium can be very accurate for weak sexual selection. However, with stronger sexual selection the total response is greater than predicted. The results suggest that genetic correlations constrain both the short-term and long-term evolution of SSD less than predicted by the Lande model

    Compost Carryover: Nitrogen Phosphorous and FT-IR Analysis of Soil Organic Matter

    Get PDF
    Compost plays a central role in organic soil fertility plans but is bulky and costly to apply. Determining compost carryover is therefore important for cost-effective soil fertility planning. This study investigated two aspects of nutritive carryover [nitrogen and phosphorus (P)], and an indicator of non-nutritive carryover [soil organic matter (SOM)] to determine the residual effect of a one-time compost application applied at four rates in a corn-squash rotation. Crop yield was measured as an integrated carryover indicator of nutritive and non-nutritive effects. Functional groups of compost and SOM were investigated using FT-IR spectroscopy and soil organic carbon (SOC). While year to year variability was great, compost had a persistent positive effect on crop yields, evident 3 years after application with no reduction in magnitude over time. Soil nitrate was low, and additions of compost at any rate generally did not increase levels beyond the year of application, with the exception of year four. Olsen P was also low, yet was higher in amended soils than in non-amended soils 3 years after application. Pronounced polysaccharide peaks, evident in compost spectra and absent in control soil, were apparent in compost-amended soils 3 years after compost treatment and SOC was greater 2 years afterwards. Compost carryover was most pronounced in year four following the incorporation of a nitrogen-fixing cover crop. These results show that compost can influence nutritive and non-nutritive soil properties many years after incorporation, thereby reinforcing the importance of including compost in organic fertility plans despite the unpredictability of year-to-year response

    Increasing Vaccination Rates of Children up to 24 months old at PMG Milwaukie Family Medicine

    Get PDF
    Increasing Vaccination Rates of children up to 24 months old at PMG Milwaukie Family Medicine Authors: Justin Ferley DO; Rachel Jackson MD; Aubrey Miller MD; Sebastian Reeve MD; Christelle Serra Van-Brunt DO; Jamie Skreen DO; Jeffrey Sun DO; John Yates MD; Daniel Ruegg MD Introduction: Each year in the US, 42000 adults and 300 children die of vaccine preventable diseases. Yet across the country, clinics – including ours – fall short of the CDC Healthy People 2020 goals of pediatric vaccination rates. This resident-led quality improvement (QI) project aimed to improve our clinic vaccination rates in the under 24mo population. Methods: We identified 3 opportunities for vaccinating children under our clinic current processes: well child visits, medical assistants’ vaccinations visits, and acute care visits. Using a multidisciplinary approach comprising residents, MAs, clinical care coordinators and our nursing quality supervisor, we analyzed our current vaccinations processes and our iterative plan-do-study- cycles (PDSA) included: PDSA #1: standardize our work flow for vaccine reconciliation. PDSA #2: sending personal reminder lebers to patients and overall improving our vaccine recall/ reminder system. PDSA #3: Minimizing provider variation for vaccines given at the 12-18mo WCC. Results: We saw an improvement in our vaccinations rates after personalized reminder letters were sent out, outlining that we do not have a reliable vaccine schedule reminder system. We also noted that different providers created different vaccinations schedules in order to prevent giving 5 vaccines at the same $me – with no system in place to follow on missed vaccination, thus creating missed opportunities and suggesting that we need to implement a clinic-wide vaccine schedule. Conclusion: Our last PDSA cycle was interrupted by current CIVD-19 pandemic. We have however found valuable data to help improve our clinic’s vaccination rates, and plan to continue this project over the next 2 years.https://digitalcommons.psjhealth.org/milwaukie_family/1007/thumbnail.jp

    Climatic Drivers for Multi-Decadal Shifts in Solute Transport and Methane Production Zones within a Large Peat Basin

    Get PDF
    Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle

    Quantitative assessment of barriers to the clinical development and adoption of cellular therapies:A pilot study

    Get PDF
    There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community

    Carbon-sensitive pedotransfer functions for plant available water

    Get PDF
    Currently accepted pedotransfer functions show negligible effect of management-induced changes to soil organic carbon (SOC) on plant available water holding capacity (θAWHC), while some studies show the ability to substantially increase θAWHC through management. The Soil Health Institute\u27s North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θFC) and permanent wilting point (θPWP). New pedotransfer functions had predictions of θAWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θAWHC. For an increase in SOC of 10 g kg–1 (1%) in noncalcareous soils, an average increase in θAWHC of 3.0 mm 100 mm–1 soil (0.03 m3 m–3) on average across all soil texture classes was found. This SOC related increase in θAWHC is about double previous estimates. Calcareous soils had an increase in θAWHC of 1.2 mm 100 mm–1 soil associated with a 10 g kg–1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience
    • …
    corecore